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We give a simple derivation of the van der Waals free energy of interaction between 
two semiinfinite media, including effects of nonzero temperature and retardation. The 
method, an extension of one used by van Kampen and co-workers at the short-distance 
and low-temperature limits, considers the free energy of electromagnetic surface modes 
in the region between the two media. The result is the same as derived by Lifshitz and 
co-workers using Green's function techniques. 

KEY W O R D S :  Free energy; electromagnetic interactions; optical properties; 
dielectric properties. 

In  a variety o f  applications, a-4) it is usually assumed that  the van der Waals interaction 
between macroscopic bodies is due primarily to electromagnetic correlations at 
ultraviolet frequencies. Typically, (2~ the macroscopic theory due to Lifshitz, (~) which 
automatically takes into account  all interaction frequencies, is reduced to a limiting 
form similar to that  of  the old H a m a k e r - L o n d o n  (s) theory. That  limiting case explicitly 
ignores temperature effects intrinsic to microwave and infrared fluctuation frequencies. 
I t  can also ignore the essential nonadditivity o f  long-range forces in condensed media. 

Recent studies (r-9) suggest that  there are biologically impor tant  cases of  inter- 
action in which the lower frequencies predominate  even in the regime o f  small 
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distances. In these cases the van der Waals forces are temperature-dependent, and 
retardation effects are important only for ultraviolet frequencies. 

The general result due to Lifshitz has been obtained by Dzyaloshinskii et al. (1~ 
via a difficult and lengthy argument involving the use of Green's function techniques 
of quantum field theory. Our aim in this note is to rederive Lifshitz's expression by 
an heuristic and intuitive method which avoids these complications. The method is an 
extension of that used by van Kampen et al., m) who recovered the special case of 
the general result which holds at zero temperature when retardation effects are ignored. 

Consider two semJinfinite media of material 1 bounding a third planar medium 
of thickness l, material 2, as in Fig. 1. The interaction between the outer media 
can be regarded as a sum of free-energy contributions from allowed surface modes 
of the system, i.e., from the normal mode frequencies of the equivalent set of harmonic 
oscillators. The contribution from a single normal mode coj is kTln[sinh(fiha~j/2)], 
where 13 = 1/(kT),  k is the Boltzmann constant, Tis temperature, and 2~rh is Planck's 
constant. We therefore consider the enumeration of the coj for the system shown, 
under the assumption that the material dielectric susceptibilities differ, e~(~o) 75 e~(o~), 
but the magnetic susceptibilities are the same,/z 1 = /~2 �9 

We seek solutions of the wave equations, harmonic in time such that we can write 
for the electric and magnetic fields 

E = Z Eo~e-i~t, H = 2 H~e-~t (1) 
o9 co 

The allowed frequencies in the summation satisfy the wave equations 

together with 

VZ(Eo~, H,o) -}- (~oJ2/c2)(E,o, Ho~) = 0 (2) 

| 

2 
Fig. 1 

V . E ~ = 0 ,  V . H o ~ =  0 (3) 

These are found by the conditions that the components of (Eo~, H~), Ex,  E~, eEl,  
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H ~ ,  H y ,  /xH~, be cont inuous at the material  boundaries.  (We take the mater ial  
boundaries  parallel to the x, y plane at z = 0 and z = L) 

For  each componen t  of  Eo, and H~ we assume the fo rm 

The six funct ionsf(z)  satisfy 

f ( z )  e i(ux+vu). 

f " ( z )  - -  p2f(z) = 0 (4) 

where p2 = u 2 + v ~ _ [oj%(o0/c ~] = r 2 _ [co2e(~o)/c ~] and r is the (real) componen t  
of  the wave vector  parallel to the slab of  material  2. 

These equations (4) have exponential  solutions 

f = Ae  ~ + Be -~ (5) 

where A and B are constants o f  integrations. Taking account  of  the fact that  only 
surface modes are of  interest, we find that  the normal  modes  {o)i} are roots  o f  either 
o f  two dispersion relations, 

Dz(co; p) = 1 - -  A~e-~~ t = 0 
(6) 

D2(w; p) = 1 - -  ,~2e-2~ = 0 

where 

zl ----- (p~Ez -- p~e~)/(p2E, + p,E~), zl = (,o2 --  pi)/(P2 -+- p0 (7) 

The requirement  Re(p~) > 0 implies that  r >~ ((o/c) Re(Ell 2) in what  follows. The 
two dispersion relations in Eq. (6) can be combined  into the single relation 

D = D z D 2  = 0 (8) 

The  free energy of  interaction, denoted G(I, T), is formal ly  given by 

oo 

G(l, T) = (1/27r) f [Gz(r) - -  Go(r)] r dr (9) 
, 1  0 

where we integrate over  all wave vectors r and 

G~(r) = k T ~ ln[sinh(fihcoH2)] (10) 
J 

in which the summat ion  goes over all of  the real roots  o f  Eq. (8). In  order  to evaluate 
the sum over the o~j, we make  use of  the identity 

~, g (%)  = (1/2rri) fcg(Co)[1/D(w)][dD(oJ)/&o ] do) (11) 

where the contour  C includes the relevant zeros of  D, and excludes poles of  g(oJ). 
The functions g(z) and D(z) are assumed to be analytic in order  for  Eq. (11) to hold. 
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Since g@o) = ln[sinh(/3hw/2)] has branch points, it is convenient to expand it as 

g(oJ) = (h~o/2) -- ~ ( l /n)e  - " ~  (12) 
n = l  

and consider each term separately. Proceeding formally, we choose the contour in 
Eq. (11) from - - i ~  to + i ~  along the imaginary axis and around the right half-plane 
along a semicircular path whose radius goes to infinity [excluding any zeros of D(~o) 
on the imaginary axis]. 

Since E(I co [) -+ 1 as I co ] ---> ~ ,  D([ co l) = 1 on the semicircle and we can write 

G~(r) = (1/2~i) f g(i~){d[ln D(i~; r)]/d~} d~ (13) 
oo 

and an integration by parts yields 
co oo 

G~(r) = @/2) Z ~o, q- (h/2~r) ~ f cos(nfih~) In Dz(i~; r) d~ 
~ --oo 

o 0  co 

-- (ih/2rr) ~ f sin(n/~h~)ln[D~(i~; r)/D~(--i~; r)] d~ (14) 
n = l  0 

The summation over cosine terms can be carried out by interchanging summation 
and integration and making use of the identity 

i c o s n x =  rr ~ 3(x--2~rn)--�89 (15) 
n = l  n=-Oo 

When the delta functions are substituted into the integrals, the integrations can be 
carried out leading to the formula 

i f  (h/2) ~ r + (h /2~v)  [cos(n]~h~)] In D~(i~; r) d~ 
j n=l --co 

= (kT/2) i in Dz(i~, ; r) (16) 

where 

so that 

~ = (2~kT/h) n (17) 

G~(r) = (kT/2) i [ln D~(i~,~ ;r)] 

oa 

-- (ih/27r) i f sin(nfih~)ln[Vz(i~; r)/D~(--i~; r)] d~ (18) 
n = l  0 

When the dielectric constants have the form 

e(~o) = 1 + ~ [cj/(m~ ~ I m~) ] (19) 
J 
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i.e., are functions of co 2 only, the second term in Eq. (18) is identically zero by symmetry 
and Eq. (18) reduces to 

G~(r) = k T  ~"  In D(i ( ,  ; r) (20) 
~ 0  

where the prime indicates that the n = 0 term is multiplied by 1/2. This result is 
easily shown to be equivalent to the form derived from Lifshitz's expression for the 
force by Ninham and Parsegian (T) 

oo t 

G(I, T)  = (kT/8rrl 2) ~ {2~,,11%(i~,~)]~/2/c} 2 
~ 0  

ao 

• ( p ln{[1 --  d 2 exp(--2p~,le~/2/c)][1 -- ~2 exp(--  2p~,lel /Z/ c) ]} ap (21) 
, /  

1 

where 

= (s - p ) / ( s  + p) ,  A = ( s ~  - p q ) / ( s q  + p , i )  
(22) 

s = [p~ - 1 + ( q / ~ ) p / 2  

The correspondence is established by replacing p2 bY~[e2(i~n)]~/2P/C in the nth term 
of Eq. (20), from which it follows that P I  = {~n[e2(i~)]~/2/c} s. When the r integration 
is carried out from 0 to co, corresponding to p going from 1 to co, the result is that 
given in Eq. (21). 

A more general form for the ei(o)), i = 1, 2, includes Debye relaxation terms, 

e(o~) = 1 + ~ [c~/(1 -- korm)] + ~ [cJ(c% ~ -- eo~)] (23) 
m 8 

where the cm and rm are positive real constants. In general, the microwave region 
is well separated from regions described by the Lorentz relaxation (c%r,~ >~ 1 for 
all s, m; e.g., for water, msrm ~> 10a). However, the terms in (1 -- icor,~) -z violate 
the symmetry of D(i~) in s e as well as cause zeros and poles in D(iO on the --~: axis. 
The second term in Eq. (18) is not obviously zero. Rather than attempt to integrate 
this second term directly, it is simpler first to rewrite D(o 0 preserving its zeros on the 
real axis. 

Note that the (1 -- ico'rr~) -1 terms add no new real positive roots to the original 
sum of Eq. (10). In the microwave region, we have 

e(a 0 = C -k ~ [c,~/(I -- horn)] (24) 
m 

where C is a real, positive constant. In order for D(o 0 to have a zero, it is necessary 
for [(q -- e=)/(e~ q- e2)] 2 to be real and ~> 1. This condition cannot be satisfied by the 
form of Eq. (23). Further, above the microwave region, the Debye terms are negligible 
and do not affect the roots, due to ordinary Lorentz dispersion. 

We may therefore vary the rm without affecting the physically essential property 
of D(~o). In particular, consider the limit r,~ -+ oo for ~ =/= 0. In this limit, the ratio 
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D(i~)/D(-- i~)  is unity, so that  the integral in question is zero and may  be neglected. 
We again obtain the final formula  (19). 

The great advantage of  using the van Kampen  surface-mode analysis is the 
triviality o f  generalizing the simplest result for the interaction o f  two semiinfinite 
media. One need only evaluate an appropriate dispersion relation D(~o)=  0 for 
multiple-layer and nonplanar  systems by solution of  the wave equations for surface 
modes. Extension to triple films, a2~ multilayers, (9~ and membrane  interaction is 
immediate. Solutions for nonplanar  geometries require straightforward solution o f  
the relevant wave equations. 
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